Historia de la trigonometría
La trigonometría es una rama de las tantas ramas de matemáticas, se encarga de estudiar y analizar la relación entre los lados y los ángulos de los triángulos. Para esto recurre generalmente a las llamadas razones trigonométricas. El origen de la palabra trigonometría desciende del griego “trigonos” (triángulo) y “metros” (metria).
Los inicios:
Hace unos 4000 años en Babilonia (antiguo reino localizado en la región de Mesopotamia) y Egipto se determinó y establecieron aproximaciones de medidas de ángulos y de longitudes de los lados de los triángulos rectángulos para ampliar y desarrollar medidas tanto en la agricultura como en la construcción de pirámides. Los egipcios fijaron la medida de los ángulos en grados, minutos y segundos. Además se utilizaba la trigonometría para el estudio de la astronomía. Antiguamente la astronomía se ocupaba de la observación y predicciones de los movimientos de los objetos visibles a simple vista y en el estudio de la predicción de sus rutas y posiciones, para luego progresar y perfeccionar la exactitud en la navegación y el cálculo del tiempo así como los calendarios. La astronomía precolombina poseía calendarios muy puntuales y las pirámides de Egipto fueron construidas sobre patrones astronómicos muy exactos y puntuales.
Grecia, India y Arabia:
Posteriormente, el estudio de la trigonometría se asentó en Grecia, donde podemos nombrar al matemático y astrónomo Griego Hiparco de Nicea, uno de los principales desarrolladores de la Trigonometría. Este matemático construyó una tabla de cuerdas para solucionar triángulos. Comenzando con un ángulo de 71° y aproximándose hasta 180° con ampliaciones de 71°, la tabla facilitaba la longitud de la cuerda limitada por los lados del ángulo central ya que fragmentaba a una circunferencia de radio r. Hasta el momento no se conoce el valor que Hiparco utilizó para r. 300 años mas tarde, el astrónomo griego Tolomeo utilizó r = 60, ya que los griegos tomaron el sistema numeral (base 60) que era usado por los babilonios. Durante varios siglos, la trigonometría de Tolomeo fue la introducción primordial para los astrónomos. El teorema de Menelao utilizado para resolver triángulos esféricos fue también obra de Tolomeo.
En India y Arabia la trigonometría era utilizada en la Astronomía. El primer uso de la función seno, aparece en el Shulba o Sulba Sutras escrito en India del siglo VIII al VI a. C. A finales del siglo X ya habían se habían completado la función seno y las otras cinco funciones trigonométricas.
Europa: (A partir del S XII)
En el siglo XII comienzan a aparecer en Europa traducciones de libros de matemáticas y astronomía árabes. El primer trabajo significativo en esta materia fue escrito por el matemático y astrónomo alemán Johann Müller. Se le considera fundador y un importante innovador en esta materia, puesto que detalla y crea varias herramientas de gran utilidad, así como importantes tratados en los que explica, analiza y muestra la obra de Tolomeo.
Durante el siglo XII el astrónomo alemán Georges Joachim, introdujo el concepto moderno de las funciones trigonométricas como proporcionales en vez de longitudes de algunas determinadas líneas. Ya en el siglo XVI el matemático francés François Vieté, incorpora en su tratado “Canon matemáticas” el triángulo polar en la trigonometría esférica.
A comienzos del siglo XVII, el matemático escocés John Napier descubrió los logaritmos que el llamó “números artificiales”. Esto fue trascendental en el desarrollo de la trigonometría.
A mediados del siglo XVII el físico, inventor, alquimista y matemático inglés, Isaac Newton descubre el cálculo diferencial e integral. También contribuyó en otras áreas de la matemática, por ejemplo desarrollando el teorema del binomio o las fórmulas de Newton-Cotes.
En el siglo XVIII, el físico y matemático suizo Leonhard Euler, explicó que las propiedades de la trigonometría eran consecuencia de la aritmética de los números complejos. Estudió además la notación actual de las funciones trigonométricas y se le atribuye el descubrimiento de la letra e como base del logaritmo natural, así como la unidad imaginaria que generalmente se denota con la letra i. Euler también popularizó El número pi ( π ).